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A linear study is carried out for the axisymmetric and non-axisymmetric instability
of a viscous coaxial jet in a radial electric field. The outer liquid is considered to be a
leaky dielectric and the inner a perfect dielectric. The generalized eigenvalue problem
is solved and the growth rate of disturbance is obtained by using Chebyshev spectral
collocation method. The effects of the radial electric field, liquid viscosity, surface
tension as well as other parameters on the instability of the jet are investigated.
The radial electric field is found to have a strong destabilizing effect on non-
axisymmetric modes, especially those having smaller azimuthal wavenumbers. The
helical mode becomes prevalent over other modes when the electric field is sufficiently
large. Non-axisymmetric modes with high azimuthal wavenumbers may be the most
unstable at zero wavenumber. Liquid viscosity has a strong stabilizing effect on both
the axisymmetric and non-axisymmetric instability. Relatively, the helical instability
is less suppressed and therefore becomes predominant at high liquid viscosity.
Surface tension promotes the instability of the para-sinuous mode and meanwhile
suppresses the helical and the other non-axisymmetric modes in long wavelength
region.

1. Introduction
In coaxial electrospraying and coaxial electrospinning experiments, two immiscible

liquids are emitted from two homocentric capillary tubes, respectively. Under certain
condition, a stationary double-layer Taylor cone is formed, with a coaxial jet ejected
from the tip of the cone. The coaxial jet is inherently unstable. It may undergo
different instability modes owing to the imposed electric field, for example, breaking
up into compound droplets (referred as coaxial electrospraying) or whipping in three-
dimensional space (coaxial electrospinning) (Loscertales et al. 2002; López-Herrera
et al. 2003; Sun et al. 2003; Yu, Fridrikh & Rutledge 2004; Chen et al. 2005).
Coaxial electrospraying and coaxial electrospinning are effective methods to produce
micro/nano capsules and composite ultrafine fibres that have a variety of applications
in drug industry, food additives, material engineering and so on.

Theoretically, the behaviour of a coaxial jet is associated closely with the instability
characteristic of the jet. When a coaxial jet is perturbed by an arbitrary infinitesimal
disturbance, its inner and outer interfaces will be modulated. In the cylindrical
coordinate system (r, θ, z) where r, θ, z are, respectively, the radial, azimuthal and
axial coordinates, the disturbance can be decomposed into Fourier exponential of
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Figure 1. Sketch of the unstable modes. (a) The para-varicose mode, (b) the para-sinuous
mode, (c) and (d ) the helical mode (e) the non-axisymmetric mode n= 2, (f ) the non-
axisymmetric mode n= 3, (g) the non-axisymmetric mode n= 4 and (h) the non-axisymmetric
mode n= 5. Solid curves: the interfaces after perturbed; dotted curves: the interfaces before
perturbed.

the form eωt+i(kz+nθ ), where ω is the complex growth rate in temporal instability
analysis, t is the time, i =

√
−1 is the imaginary unit, k is the real axial wavenumber

and n is the azimuthal wavenumber (integer). According to the phase difference of
the perturbations at the inner and outer interfaces, there exist two unstable modes,
i.e. para-varicose mode and para-sinuous mode, for the axisymmetric instability
(n= 0). The corresponding interface deformation in the r–z plane is sketched in
figures 1(a) and 1(b). For para-varicose mode the interfaces are perturbed almost
out of phase, while for para-sinuous mode the interfaces are deformed in phase.
For non-axisymmetric instability of a certain azimuthal wavenumber n, there exists
only one unstable mode. The interface configurations of several non-axisymmetric
instability modes with small azimuthal wavenumbers (n= 1, 2, 3, 4, 5) are shown in
figures 1(c)–1(h), respectively. For the non-axisymmetric mode n= 1, also called the
helical mode, the interfaces and the central line of the jet are displaced in phase with
the area of cross-section unchanged, as sketched in figures 1(c) and 1(d ). For the
non-axisymmetric modes n= 2, 3, 4 and 5, the central line of the jet is unperturbed,
but the periodical variation of the interfaces arises in the r–θ plane, the period of
which is determined by the value of n. The non-axisymmetric modes may lead to the
formation of irregular ramified shapes during the breakup process of the jet (Hartman
et al. 2000). For a single liquid jet a non-axisymmetric mode with relatively small
azimuthal wavenumber is easier to destabilize (Avital 1995). The same phenomenon
is found in the coaxial jet case.

In coaxial electrospraying, axisymmetric disturbances dominate in the breakup
process and the jet therefore breaks up into compound droplets. However, helical
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Figure 2. Schematic description of the theoretical model.

instability predominates over axisymmetric instability in coaxial electrospinning,
leading to the bending of the jet in space without breakup. The authors developed
a leaky dielectric model to study the axisymmetric instability of a viscous coaxial jet
in a radial electric field (Li, Yin & Yin 2008a). The analytical dispersion relations
were derived and the temporal growth rates of the unstable modes were solved.
The effects of the radial electric field as well as the other parameters on the jet
instability were discussed in detail. In our recent paper (Li, Yin & Yin 2008b),
the helical instability was compared with the axisymmetric instability briefly. Both
the radial and axial electric fields were found to have remarkable effects on them.
However, a comprehensive comparison between axisymmetric and non-axisymmetric
instability remains to be implemented. In the present paper we will research all
possible unstable modes in the outer-driving coaxial jet case. A theoretical model
similar to that established in Li et al. (2008a) is used. We aim to gain some insight
into the effects of the radial electric field as well as physical properties of the jet on
axisymmetric and non-axisymmetric instability, and seek the condition that favours
the predominance of the desirable modes.

The paper is organized as follows: In § 2, the theoretical model is described.
The basic velocity profile is simplified appropriately. The governing equations and
boundary conditions are given. In § 3, the complex eigenvalue is calculated numerically.
The effects of the radial electric field and physical properties of the liquids on the
growth rates of the axisymmetric and non-axisymmetric modes are investigated.
Particularly, the effect of liquid viscosity on the predominance of the para-sinuous
and helical modes is discussed. In § 4, the main conclusions are drawn.

2. Theoretical model
Consider an infinitely long coaxial cylindrical jet consisting of two liquids, as

sketched in figure 2. The radii of the inner and outer liquids are R1 and R2, respectively.
An annular electrode of radius R3 is positioned around the jet. An electrical potential
V0 is imposed between the outer interface of the jet and the electrode. The medium
between the electrode and the jet is air under normal condition. In the outer-
driving coaxial jet case, the outer liquid is considered to be a leaky dielectric of
finite conductivity, acting as driving liquid. The conductivities of the inner liquid
and ambient air are so small that they are considered to be perfect dielectrics. The
conductivity of the outer liquid is assumed to be large enough for free charge to
relax to the outer interface of the jet. There is no charge in the jet (Higuera 2007;
Li et al. 2008a). In the unperturbed state, free charge is distributed on the outer
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interface uniformly, with zero basic electric field in the jet. The electric field intensity
in the air is −V0/[r ln(R2/R3)] in the radial direction, where ‘ln’ stands for the natural
logarithm. The density of charge is −ε3V0/[R2 ln(R2/R3)], where ε3 is the electrical
permittivity of the air.

The liquids are assumed to be incompressible viscous fluids. There is no mass
transfer at the interfaces. The effects of gravity, magnetic field and temperature are
neglected. The jet before perturbed is assumed to be cylindrical. The basic flow is
steady and axisymmetric. In the cylindrical coordinates (r, θ, z) the basic velocity only
has the non-zero component in the axial direction, i.e.

Um = (Umr, Umθ , Umz) = (0, 0, Umz(r)) , m = 1, 2, 3 (2.1)

where the subscripts 1, 2 and 3 stand for the inner liquid, the outer liquid and the
air, respectively. The velocity components Umz(r) satisfying the steady momentum
equation and boundary conditions are (Li et al. 2008a)

U1z = 1 + μr3

1 − a2

b2 − 1
+

μr3

μr

a2 − r2

b2 − 1
, (2.2a)

U2z = 1 + μr3

1 − r2

b2 − 1
, (2.2b)

U3z =
b2 − r2

b2 − 1
, (2.2c)

where the velocity components are scaled by the velocity at the outer interface of
the jet, a = R1/R2 and b = R3/R2 are the radius ratios, μr = μ1/μ2 is the viscosity of
the inner liquid relative to the outer liquid, and μr3 = μ3/μ2 is the viscosity of the
air relative to the outer liquid. It is supposed that the viscosity of the air is much
smaller than that of the liquids, i.e. μr3 � 1. In such a case we have U1z ≈ 1 and
U2z ≈ 1. That is, the velocities of the inner and outer liquids are equal and constant.
Furthermore, we assume that the hydrodynamic effect of the air is negligible in the
instability analysis. Therefore, it is convenient to apply a relative coordinate system
moving with the jet. In addition, the radius of the annular electrode is supposed to be
much larger than that of the jet, i.e. b � 1. The assumption is appropriate for most
electrified coaxial jet experiments.

The driving pressure gradients in the liquids and air, ∂Pm/∂z, where Pm is the basic
pressure field, must be equal in order to meet force balance at the interfaces (Chen &
Lin 2002). The pressure fields of the liquids and air have the following relationships:

P1 = P2 +
γ1

R1

, P3 = P2 − γ2

R2

+
ε3V

2
0

2R2
2 ln2(R2/R3)

,

where γj , j = 1, 2, is the surface tension coefficient. Hereafter, the subscripts 1 and 2
stand for the inner interface and the outer interface, respectively, while referring to
the quantities on the interfaces. Although the radial electric field affects force balance
in the unperturbed state, it has no effect on the basic velocity profile owing to the
absence of electrical shear stresses.

When the jet is disturbed, the perturbations of all the quantities are assumed to be
small. The small disturbance assumption allows us to expand the governing equations
and boundary conditions and only keep the linear terms in the linear instability
analysis. Choosing ρ2, R2, U (the velocity of the jet) and ρ2U

2 as the characteristic
density, length, velocity and pressure, we non-dimensionalize the equations. The
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governing equations linearized in the dimensionless form are

∇ · u1,2 = 0, (2.3)

∂u1

∂t
= − 1

S
∇p1 +

μr

SRe
∇2u1, (2.4)

∂u2

∂t
= −∇p2 +

1

Re
∇2u2, (2.5)

where u and p are the perturbations of the velocity and pressure, respectively.
S = ρ1/ρ2 is the density ratio of the inner to the outer liquid and Re= ρ2UR2/μ2 is
the Reynolds number.

The three components of the velocity and the pressure at the symmetry axis r =0
satisfy the following consistency conditions (Ash & Khorrami 1995):

u1r = u1θ =
∂u1z

∂r
=

∂p1

∂r
= 0 for n = 0, (2.6)

u1z = p1 = 0, u1r +
∂u1θ

∂θ
= 0, 2

∂u1r

∂r
+

∂2u1θ

∂r∂θ
= 0 for n = 1, (2.7)

u1r = u1θ = u1z = p1 = 0 for n > 1. (2.8)

At the inner interface r = a + η1, the kinematic boundary condition, the continuity
of the velocity and the balance of forces in two tangential and one normal directions
should be satisfied, i.e.

u1r =
∂η1

∂t
, (2.9)

u1 = u2, (2.10)

1

Re

(
∂u2r

∂z
+

∂u2z

∂r

)
− μr

Re

(
∂u1r

∂z
+

∂u1z

∂r

)
= 0, (2.11)

1

Re

(
∂u2r

r∂θ
+

∂u2θ

∂r
− u2θ

r

)
− μr

Re

(
∂u1r

r∂θ
+

∂u1θ

∂r
− u1θ

r

)
= 0, (2.12)

p1 − 2μr

Re

∂u1r

∂r
− p2 +

2

Re

∂u2r

∂r
=

Γ

We
∇ · n1; (2.13)

at the outer interface r = 1 + η2, the kinematic boundary condition and the balance
of forces in the tangential and normal directions should be satisfied, i.e.

u2r =
∂η2

∂t
, (2.14)

1

Re

(
∂u2r

∂z
+

∂u2z

∂r

)
− ζE3z + ζn2z = 0, (2.15)

1

Re

(
∂u2r

r∂θ
+

∂u2θ

∂r
− u2θ

r

)
− ζE3θ + ζn2θ = 0, (2.16)

p2 − 2

Re

∂u2r

∂r
+

1

2
ζE2

3r =
1

We
∇ · n2, (2.17)
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where ηj , j = 1, 2, is the displacement of the interface from its equilibrium
position Rj, nj is the outward normal unit vector on the interface, E is the
component of the electric field intensity, We = ρ2U

2R2/γ2 is the Weber number
representing the magnitude of the surface tension relative to the inertial force,
ζ = ε3V

2
0 /ρ2U

2R2
2 ln2(R2/R3) is the electrical Euler number representing the magnitude

of the electrical stress relative to the inertial force and Γ = γ1/γ2 is the interface
tension coefficient ratio of the inner and outer interfaces. The components of n and
the corresponding curvature of the interface are, respectively,

n = (nr, nθ , nz) =

(
1, − ∂η

r∂θ
, −∂η

∂z

)
and ∇ · n =

1

r
− 1

r2

∂2η

∂θ2
− ∂2η

∂z2
.

It can be seen from (2.11)–(2.13) that there is no electric field contribution to the force
balance at the inner interface. This is because that the electrical stresses at the inner
interface are high-order quantities. They are ignored in the linear scope. Electrical
stresses only appear in the force balance conditions at the outer interface.

In electrostatics the electrical potential perturbation ψm satisfies the Laplace
equation

∇2ψm = 0, m = 1, 2, 3 (2.18)

with the electric field intensity Em = − ∇ψm.
The electric field must be bounded at the symmetry axis r =0. At the inner

interface r = a + η1, the continuity of the tangential electric field and the normal
electric displacement should be satisfied, i.e.

n1 × (E2 − E1) = 0, (2.19)

n1 · (εr2 E2 − εr1 E1) = 0; (2.20)

at the outer interface r = 1+η2, the continuity of the tangential electric field, the Gauss
law and the interface charge conservation equation should be satisfied (Melcher &
Taylor 1969; Saville 1997), i.e.

n2 × (E3 − E2) = 0, (2.21)

n2 · (E3 − εr2 E2) = qs, (2.22)

∂qs

∂t
− n2 · (n2 · ∇)u2 − τεr2 E2 · n2 = 0, (2.23)

where qs is the perturbation of the dimensionless charge density at the outer interface.
The relevant dimensionless parameters are the relative electrical permittivity of the
inner liquid εr1 = ε1/ε3, the relative electrical permittivity of the outer liquid εr2 = ε2/ε3

and the relative electrical relaxation time τ = R2σ2/Uε2, where σ2 is the electrical
conductivity of the outer liquid.

Substituting the Fourier decomposition into (2.3)–(2.23), we obtain a set of the
ordinary differential equations of eigenfunctions. The equations are written in a
condensed form in the Appendix.

3. Numerical results and discussion
In this section we analyse the temporal instability of the electrified coaxial jet.

Since in the theoretical model the basic velocity profile is simplified to be uniform,
it is possible to derive the analytical dispersion relations for the axisymmetric and
non-axisymmetric instability. For the axisymmetric instability, the dispersion relation
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D(k, ω) = 0 as well as the amplitude ratio of the interface perturbations η̂1/η̂2 has the
similar form to that derived in Li et al. (2008a). For the non-axisymmetric instability,
the analytical dispersion relation will be far more complicated. So we solve the
problem using numerical method. For the problem formulated in the Appendix, the
complex growth rate ω can be obtained numerically by means of the Chebyshev
spectral collocation method. The procedure is outlined as follows. First, the radial
coordinate r is transformed to the calculation space y ∈ [−1, 1]. Considering the
velocity profile of the jet is uniform, a linear transform is appropriate. For the inner
liquid domain r ∈ [0, a], the transform is

r =
a(1 + y)

2
;

for the outer liquid domain r ∈ [a, 1], the transform is

r =
(a − 1)y + 1 + a

2
.

In the bounded domain y ∈ [−1, 1], the bulk eigenfunctions and their derivatives
are expanded in Chebyshev series. Then the governing equations in bulk are evaluated
at the Gauss–Lobatto collocation points yj = cos(jπ/N), j =0, 1, . . . , N , where N

is the number of the collocation points. At the interfaces and the symmetry axis the
corresponding boundary conditions are evaluated. Finally the problem turns into a
generalized eigenvalue problem of the same form as in the Appendix. In order to
ensure convergence, the number of the collocation points in the inner liquid (N1)
is commonly 10–15, and in the outer liquid (N2) it is 5–10. The number of the
expansion coefficients of Chebyshev series is 4N1 + 4N2 + 11. The size of matrices A
and B after discretization is (4N1 + 4N2 + 11) × (4N1 + 4N2 + 11). A MATLAB code
is developed to solve the generalized eigenvalue problem. The validity of the code has
been examined by the result in Li et al. (2008a).

As mentioned above, for axisymmetric instability of a coaxial jet there are two
unstable modes, i.e. the para-sinuous and the para-varicose modes, in the Rayleigh
regime (in this regime the jet breaks up into droplets of diameter comparable to
jet diameter, i.e. the dimensionless axial wavenumber k is of the order of unity)
(Lin 2003). In most situations, the para-sinuous mode is much more unstable than
the para-varicose mode and therefore dominates in the jet instability. This is the
case of coaxial electrospraying (Loscertales et al. 2002; López-Herrera et al. 2003;
Chen et al. 2005). While the helical instability becomes dominant, the jet produces
not microcapsules but composite ultrafine fibres. This corresponds to the case of
coaxial electrospinning (Sun et al. 2003; Yu et al. 2004). In practical applications the
products of coaxial electrospraying and coaxial electrospinning are expected to be
monodisperse. To realize it, we need to promote the destabilization of the desirable
mode and at the same time suppress the instability of all the other modes. Here
we aim to discover the condition that favours the predominance of the para-sinuous
mode and the helical mode.

In the outer-driving electrified coaxial jet case, we take water and sunflower oil
as the outer and inner liquids, respectively. Water is a leaky dielectric of finite
conductivity. Sunflower oil is a perfect dielectric of negligible conductivity. The
physical properties of them can be found in López-Herrera et al. (2003). In order
to be more close to experimental situations, we assume that the jet diameter is of
the order of micrometres. The velocity of the jet is about 1 m s−1. The electrical
potential between the jet surface and the electrode is several thousand volts, and
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Figure 3. The effect of the radial electric field on the growth rates of (a) the para-varicose
mode n= 0, (b) the para-sinuous mode n= 0, (c) the helical mode n= 1 and (d ) the non-
axisymmetric mode n= 2.

the radius of the electrode is of the order of centimetres. Based on the assumption
as above we can estimate value ranges of the dimensionless parameters. There are
10 dimensionless parameters in this problem. For convenience of calculation and
comparison, a reference state is supposed. The reference dimensionless parameters
are S = 0.84, a = 0.8, μr = 43, Re =10, We= 10, Γ = 0.23, ζ = 0.15, εr1 = 3.4, εr2 = 80
and τ = 1. In the calculation the dimensionless parameters are fixed to the reference
values unless stated otherwise.

3.1. Effect of the radial electric field on the jet instability

The effect of the radial electric field on the para-varicose mode and para-sinuous
mode is represented in figures 3(a) and 3(b), respectively. It is shown that the
radial electric field has a two-fold effect on the two modes: at wavenumbers smaller
than a certain value, the electric field suppresses the instability of the modes; at
wavenumbers larger than the value, the electric field enhances the instability of them.
The growth rate of the para-varicose mode is usually three orders of magnitude
smaller than that of the para-sinuous mode. The effect of the electric field on the
para-sinuous mode is more profound. As the electrical Euler number ζ increases,
the waves in long wavelength region become less unstable, and moreover, the most
possible wavenumber kmax corresponding to the maximum growth rate ωmax together
with the cut-off wavenumber kc moves towards short wavelength region. Accordingly
the coaxial jet breaks up into droplets of diameter smaller than those at zero electric
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Figure 4. Comparison of the growth rates of the para-sinuous mode and the unstable
non-axisymmetric modes. ζ = 0.75.

field. The electric field may accelerate the breakup of the jet significantly in short
wavelength region.

In the absence of electric field, the helical mode and the other non-axisymmetric
modes are stable. The radial electric field turns out to be the only factor in this
problem that results in the instability of the non-axisymmetric modes. As the electric
field increases, they become unstable one by one. The non-axisymmetric mode with
relatively small azimuthal wavenumber is easier to be destabilized. Figures 3(c) and
3(d ) illustrate the effect of the radial electric field on the growth rates of the helical
mode and the non-axisymmetric mode n= 2, respectively. Apparently, the electric
field has a strong destabilizing effect on them. The most possible wavenumber of
the helical mode locates in long wavelength region. As ζ increases, kmax is enlarged
to a certain extent. In addition, the electric field makes the waves in relatively short
wavelength region unstable, but their growth rates are smaller compared to the
maximum growth rate. For the non-axisymmetric mode n= 2, kmax appears near zero
when the electric field is small. As ζ increases, kmax and kc move towards short
wavelength region. The calculation result shows that the effect of the radial electric
field on the non-axisymmetric modes n > 2 is similar to that on n= 2, which is not
plotted here.

To compare the axisymmetric and non-axisymmetric instability further, the growth
rates of the para-sinuous and non-axisymmetric modes are plotted in figure 4, where
the electrical Euler number is fixed at a relatively large value, i.e. ζ = 0.75. The
non-axisymmetric modes up to n= 6 are unstable. At zero axial wavenumber, the
non-axisymmetric mode n= 4 is the most unstable. The other non-axisymmetric
modes n= 2, 3, 5, 6 also have non-zero growth rates. The phenomenon indicates
that the ramified jet breakup may occur if an infinitely long-wave perturbation is
imposed on the jet compulsively. In long wavelength region, the growth rate of the
helical mode is the largest, and therefore the helical mode dominates. In relatively
small wavelength region, the para-sinuous mode is the most unstable. However, when
the electric field is sufficiently strong, as illustrated in figure 4, the growth rates of
the non-axisymmetric modes become comparable to that of the para-sinuous mode.
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Figure 5. The effect of the relative electrical permittivity of the outer liquid on the growth
rates of (a) the para-sinuous mode n= 0 and (b) the helical mode n= 1.

Moreover, the most possible wavenumbers of them are close to each other. In such a
case it is hard to discern which is dominant.

In general, the helical mode is the most unstable instead of the para-sinuous mode,
when the radial electric field is amplified sufficiently. At large electric field, the para-
sinuous mode, helical mode and even non-axisymmetric modes with higher azimuthal
wavenumbers have equal opportunity to be destabilized in short wavelength region.
From this point large electric field is undesirable for the predominance of the para-
sinuous mode. At zero axial wavenumber, non-axisymmetric instability is dominant,
the details of which are determined by the magnitude of the electric field strength.

3.2. Effect of the electrical properties of the liquids on the jet instability

In the leaky dielectric model, the relative electrical permittivities of the inner and outer
liquids, i.e. εr1 and εr2, are involved. Mathematically, it can be seen from matrix A in
the Appendix that the effect of them on the jet instability seems complicated. Here
we perform a brief analysis within typical value range. Figures 5(a) and 5(b) illustrate
the effect of εr2 on the growth rates of the para-sinuous mode and helical mode,
respectively. (The para-varicose mode is much less unstable than the para-sinuous
mode and helical mode, and the non-axisymmetric modes n> 2 are stable. The curves
of them are not shown.) In the figure the maximum growth rate and corresponding
most possible wavenumber change little, as εr2 varies. Moreover, εr2 has no influence
on the cut-off wavenumber. It was found that the limit of εr2 → ∞ is equivalent
to the case in which the outer-driving liquid has infinite electrical conductivity (Li
et al. 2008a). In such a case the relative permittivities of the liquids as well as the
relative electrical relaxation time are not involved in the instability analysis. In order
to research the effect of εr1, we keep εr2 at a small number, i.e. εr2 = 3.4. Figures 6(a)
and 6(b) illustrate the effect of εr1 on the growth rates of the para-sinuous mode and
helical mode, respectively. It is shown that the permittivity of the inner liquid also
has no significant effect on the instability of the unstable modes.

In this problem, there are several characteristic times. They are the electrical
relaxation time τe ∼ ε2/σ2, the convective time τF ∼ R2/U , the capillary time
τc ∼ (ρ2R

3
2/γ2)

1/2 and the viscous diffusion time τv ∼ ρ2R
2
2/μ2. Suppose ρ2 = 1000

kg m−3, μ2 = 1.0 × 10−3 kg m−1 s−1, γ2 = 0.072 N m−1, ε2 = 80 (relative to vacuum),
σ2 = 4 × 10−6 S m−1, R2 = 10−5 m, U = 1 m s−1. The values of the characteristic times
are τe ≈ 1.8 × 10−4 s, τF ≈ 1.0 × 10−5 s, τc ≈ 3.7 × 10−6 s and τv ≈ 1.0 × 10−4 s,
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Figure 6. The effect of the relative electrical permittivity of the inner liquid on the growth
rates of (a) the para-sinuous mode n= 0 and (b) the helical mode n= 1. εr2 = 3.4.
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Figure 7. The effect of the relative electrical relaxation time on the growth rates of (a) the
para-sinuous mode n= 0 and (b) the helical mode n= 1. εr2 = 3.4.

respectively. The estimation shows that none of the characteristic times can be far
larger than the others. It indicates that the conduction, convection, capillary and
viscosity are all important in this problem. We use the ratio of the convective time
to the electrical relaxation time, i.e. τ = R2σ2/Uε2, to weigh the speed of free charge
relaxation. If τ approaches zero, it corresponds to the large electrical relaxation time
limit (LERT); conversely, if τ approaches infinity, it corresponds to the small electrical
relaxation time limit (SERT) (Li et al. 2008a). Figures 7(a) and 7(b) illustrate the effect
of τ on the growth rates of the para-sinuous mode and helical mode, respectively.
For the same reason as mentioned earlier, the relative permittivity of the outer liquid
εr2 is kept at 3.4. For a fixed wavenumber, the SERT case is the most unstable, and
the LERT case is the least unstable. However, similar to the electrical permittivities
of the liquids, the electrical relaxation time influences the jet instability to a limited
extent, particularly for the helical mode.

3.3. Effect of the viscosity of the liquids on the jet instability

3.3.1. Effect of liquid viscosity

In this model, two dimensionless parameters are related to liquid viscosity. They
are the Reynolds number Re= ρ2UR2/μ2 and the viscosity ratio μr = μ1/μ2. The
Reynolds number Re measures the magnitude of the viscosity of the outer liquid.
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The Reynolds number of the inner liquid is a combined dimensionless parameter, i.e.
Re1 = ρ1UR2/μ1 = SRe/μr . Apparently, Re1 increases or decreases together with Re.
Considering that the viscosity of the inner and outer liquids may have similar effect
on the jet instability, we study the effect of liquid viscosity through changing the value
of Re, leaving μr in the reference state.

Figures 8(a)–8(d ) illustrate the growth rates of the para-varicose mode, para-
sinuous mode, helical mode and non-axisymmetric mode n= 2, respectively, at a
relatively small Reynolds number Re= 1. Compared with figure 3 where Re= 10, it
can be seen that all the modes are suppressed. For a fixed electrical Euler number
ζ , the maximum growth rates of the para-varicose mode, para-sinuous mode and
non-axisymmetric mode n= 2 are decreased to about one tenth of that at Re= 10.
The helical mode is also decreased, but not so much as the others. The most possible
wavenumbers of the modes move towards long wavelength region to a certain extent
as the Reynolds number decreases. The Reynolds number has no influence on the
cut-off wavenumbers of the modes.

The result in a relatively large electric field is shown in figure 9, where the electrical
Euler number ζ = 0.75. In the figure the y-axis on the left side is for the para-sinuous
mode and the non-axisymmetric modes n > 1, and the y-axis on the right side is for
the helical mode. The non-axisymmetric modes up to n= 6 are unstable. Compared
with the result in figure 4, the growth rates of the unstable modes except that of
the helical one are decreased dramatically. The helical mode is stabilized a little.
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Accordingly liquid viscosity may promote the predominance of the helical mode in
the jet instability. That is, for highly viscous liquids the helical instability is easier to
realize in experiments (Sun et at. 2003; Yu et al. 2004).

To investigate the effect of the electric field and liquid viscosity further, we compare
the maximum growth rate of each mode, and obtain the boundary curve between the
dominant regions of them in the (Re, ζ ) plane. The curve is plotted in figure 10, where
a log–log plot is represented for clarity. The square marks stand for data points, and
the dotted line is the fitted boundary curve by means of the least-square method.
The boundary curve is a straight line. The fitting shows that the relation between
the critical electrical Euler number and critical Reynolds number is ζ = 0.020Re0.32

approximately. Below the boundary curve is the dominant region of the para-sinuous
mode, and above it is the dominant region of the helical mode. There is no dominant
region for the other non-axisymmetric modes.
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In addition, the corresponding most possible wavelength λmax =2π/kmax of the
dominant modes is plotted in figure 11. The squares stand for data points of the
para-sinuous mode, and the circles for the helical mode. The dotted lines are the fitted
curve. The relation between the most possible wavelength and the critical Reynolds
number is approximately linear in the log–log plot, λmax = 42.0Re−0.31 for the para-
sinuous mode and λmax = 114.0Re−0.80 for the helical mode. As mentioned before, the
most possible wavelength increases as the Reynolds number decreases.

3.3.2. The low-Reynolds-number case

It is well known that for a single liquid jet long waves are most unstable at low
Reynolds numbers (Mestel 1996). The similar phenomenon is found in the coaxial
jet case. As shown in figure 8(b), in the absence of electric field the maximum growth
rate of the para-sinuous mode occurs near zero axial wavenumber. The result also
shows that the helical mode is much more outstanding than the other unstable modes
when liquid viscosity is high. The low-Reynolds-number case is of interest to research
especially.

As Re � 1, the momentum equations (2.4) and (2.5) approximate to the Stokes
equations, i.e.

∇p1 =
μr

Re
∇2u1, ∇p2 =

1

Re
∇2u2. (3.1)

Note that in the low-Reynolds-number case the density ratio S = ρ1/ρ2 and the
basic velocity profile no more influence the jet instability. Imposing the normal mode
decomposition on each physical quantity, we obtain the ordinary differential equations
in the following component form:

dûmr

dr
+

ûmr

r
+

in

r
ûmθ + ikûmz = 0,

d2ûmr

dr2
+

1

r

dûmr

dr
−

(
k2 +

n2 + 1

r2

)
ûmr − 2in

r2
ûmθ =

Re

δm2 + μrδm1

dp̂m
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,

d2ûmθ

dr2
+

1

r

dûmθ
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−

(
k2 +
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r2

)
ûmθ +

2in

r2
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δm2 + μrδm1

inp̂m

r
,
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d2ûmz

dr2
+

1

r

dûmz

dr
−

(
k2 +

n2

r2

)
ûmz =

Re

δm2 + μrδm1

ikp̂m,

where the subscript m =1, 2 stands for the inner and outer liquids, respectively, δ is
the Kronecker function. The solutions are

p̂1(r) = A1In(kr),

û1r (r) = A2In−1(kr) + A3In+1(kr) +
Rer

2μr

A1In(kr) − Re(n + 2)

2kμr

A1In+1(kr),

û1θ (r) = iA2In−1(kr) − iA3In+1(kr) +
iRe(n + 2)

2kμr

A1In+1(kr),

û1z(r) = i (A2 + A3) In(kr) +
iRer

2μr

A1In+1(kr),

p̂2(r) = A4In(kr) + A5Kn(kr),

û2r (r) = A6In−1(kr) + A7In+1(kr) + A8Kn−1(kr) + A9Kn+1(kr)

+
Rer

2
[A4In(kr) + A5Kn(kr)] − Re(n + 2)

2k
[A4In+1(kr) − A5Kn+1(kr)] ,

û2θ (r) = iA6In−1(kr) − iA7In+1(kr) + iA8Kn−1(kr) − iA9Kn+1(kr)

+
iRe(n + 2)

2k
[A4In+1(kr) − A5Kn+1(kr)] ,

û2z(r) = i (A6 + A7) In(kr) − i (A8 + A9) Kn(kr) +
iRer

2
[A4In+1(kr) − A5Kn+1(kr)] ,

where A1–A9 are coefficients to be determined. Substituting the solutions into
the boundary conditions, we obtain a homogeneous linear system comprising 12
equations. There are correspondingly 12 unknown quantities, i.e. A1–A9, η̂1, η̂2 and
q̂s . The system has non-trivial solution only if the determinant of its coefficient
matrix is null, which gives the dispersion relation. The dispersion relation in the
low-Reynolds-number case is a cubic equation of the complex growth rate ω, i.e.

ω3 + a1ω
2 + a2ω + a3 = 0. (3.2)

Furthermore, supposing k → 0, we obtain the dispersion relation in the long
wavelength limit, which has the same form as (3.2). The expressions of coefficients
a1, a2 and a3 are too long to represent here. The dispersion relation can be solved
numerically. There are three solutions. Each corresponds to one mode. Two are usually
unstable for axisymmetric instability, corresponding to the para-varicose mode and
para-sinuous mode, respectively. One is unstable for non-axisymmetric instability.

Figures 12(a) and 12(b) illustrate the para-sinuous mode and helical mode,
respectively, in the low-Reynolds-number case, where Re = 0.1. Because the electric
field is relatively small, the non-axisymmetric modes n> 1 are stable. In figure 12(a)
the most possible wavenumber kmax of the para-sinuous mode is zero when the
electrical Euler number ζ =0. As the electric field increases, kmax moves away from
zero to long wavelength region. In figure 12(b) the helical mode is unstable in long
wavelength region. The growth rate of it is three orders of magnitude larger than that
of the para-sinuous mode, and therefore the helical instability is definitely dominant
in the breakup process of the jet. Furthermore, in the low-Reynolds-number case,
the helical mode predominates over the others even when the radial electric field
is considerably small. According to the fitting in figure 10, it is concluded that the
critical electrical Euler number is 0.020 as Re → 0.
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Figure 12. The effect of the radial electric field on the growth rates of (a) the para-sinuous
mode n= 0 and (b) the helical mode n= 1. Re= 0.1.

3.3.3. Energy budget

In the above analysis one question is why liquid viscosity dampens the axisymmetric
instability much more than the helical instability. To better understand the mechanism
in it, we carry out an energy budget. Because of the complexity of the present model,
we propose a simple theoretical model to evaluate the energy parts involved in the
perturbed state.

Consider a single liquid jet of uniform basic velocity U , subjected to a radial electric
field of magnitude −V0/[r ln(R/R0)], where R is the radius of the jet and R0 is the
radius of the annular electrode. The liquid is a perfect conductor of infinite electrical
conductivity. The density and viscosity of it is denoted by ρ and μ, respectively. The
surface tension on the jet surface is γ . The hydrodynamic effect of the air surrounding
the jet is neglected.

Suppose the jet is perturbed by an infinitesimal three-dimensional disturbance at
initial time. A temporal linear instability in terms of the normal mode method gives
the dispersion relation of the following dimensionless form (Avital 1995; Li et al.
2007): ∣∣∣∣∣∣∣∣∣

2ikI ′
n(k) −In+1(l) − l2

k2
I ′
n(l) In−1(l) +

l2

k2
I ′
n(l)

2ink

(
I ′
n(k) − In(k)

k

)
lIn+2(l) lIn−2 (l)

D1 D2 D3

∣∣∣∣∣∣∣∣∣
= 0, (3.3)

where

l =
√

k2 + Re(ω + ik),

D1 = (ω + ik)In(k) +
2k2

Re
I ′′
n (k) +

kT I ′
n(k)

ω + ik
,

D2 =
2il

Re
I ′
n+1(l) +

iT In+1(l)

ω + ik
,

D3 = −2il

Re
I ′
n−1(l) − iT In−1(l)

ω + ik
,

T = ζ

(
1 + k

K ′
n(k)

Kn(k)

)
− 1

We
(1 − n2 − k2).
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Figure 13. Comparison of the varicose mode and the kink mode for a single liquid jet under
a radial electric field. (a) Re= 10 and (b) Re =1. We= 10, ζ = 0.1.

The symbol ′′ denotes the second derivative of the corresponding Bessel function
with respect to the argument. The relevant dimensionless parameters are the Reynolds
number Re= ρUR/μ, the Weber number We= ρU 2R/γ and the electrical Euler
number ζ = ε3V

2
0 /ρU 2R2 ln2 (R/R0).

The dispersion relation (3.3) can be solved numerically. The unstable mode for
the axisymmetric instability n= 0 is usually called varicose mode, and the mode
for the non-axisymmetric instability n= 1 is called kink mode (Son & Ohba 1998).
Figure 13 illustrates the growths rates of the varicose mode and the kink mode at
different Reynolds numbers. In the calculation the electrical Euler number is kept at
a small number (ζ = 0.1) so that the non-axisymmetric instability n> 1 are stable. At
a relatively large Reynolds number Re= 10 as shown in figure 13(a), the kink mode
is comparable to the varicose mode. In such a case both are possibly dominant in
the jet breakup. However, at a relatively small Reynolds number Re = 1 as shown in
figure 13(b), the growth rate of the kink mode is much larger than that of the varicose
mode. In such a case the kink mode is obviously dominant. The result indicates that
higher viscosity favours the predominance of the kink mode and helps the realization
of electrospinning in experiments.

The method of energy budget can be referred to Lin (2003). The main procedure
is as follows. Calculating the dot product of the momentum equation of disturbance
with the velocity perturbation u, integrating the equation over a control volume of
one wavelength λ= 2π/k and one period T = 2π/ωi (ωi is the imaginary part of
the complex growth rate ω), using the continuity equation and Gauss theorem to
transform volume integrals into surface integrals, and averaging the integrals over λ
and T , we obtain the energy equation

1

T λ

∫ T

0

∫∫∫
V

(
∂

∂t
+

∂

∂z

)
edV dt = − 1

T λ

∫ T

0

©
∫∫

A

pu · ndAdt

+
1

T λRe

∫ T

0

©
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A

(u · τ ) · ndAdt − 1

2ReT λ

∫ T

0

∫∫∫
V

τ · τdV dt, (3.4)

where e = u · u/2 is the kinetic energy of disturbance, V and A are the control volume
and corresponding surface, respectively, and τ = ∇u + (∇u)T is the strain rate tensor
where the superscript T means transposition. The left-hand side of (3.4) represents
the change rate of the disturbance kinetic energy. Three terms on the right-hand
side represent the work done by pressure, the work done by viscous stress and the
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energy dissipation through viscosity. Applying the kinematic and dynamic boundary
conditions to (3.4), it yields

KE = PRL + SUT + ELF + SHL + NVL + DIS, (3.5)

where
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T λ
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KE on the left-hand side of (3.5) represents the change rate of the disturbance
kinetic energy. There are six terms on the right-hand side. Each of them represents a
physical mechanism affecting the jet instability. PRL is the rate of work done by the
pressure at the two ends of the control volume, SUT and ELF are the rates of work
done by the surface tension and radial electric field at the jet surface, respectively,
SHL and NVL are the rates of work done by the tangential and normal viscous
stresses at the two ends of the control volume, respectively, and DIS is the rate
of energy dissipation through liquid viscosity in volume. Obviously, DIS is always
negative. The integrals are calculated by using the IMSL subroutine QAND. Each of
the integrals is calculated independently. Hence the comparison between the sum of
all the terms on the right-hand side and KE on the left-hand side provides a simple
check for the calculation accuracy.

Figure 14 illustrates the energy budget for the single liquid jet under the radial
electric field at two typical values of the Reynolds number. All the energy terms are
normalized with the value of KE corresponding to the most possible wave-number
of the varicose mode at the same Reynolds number. The terms PRL, SHL and
NVL are usually five to eight orders of magnitude smaller than KE. Therefore they
are negligible in energy budget. From figures 14(a) and 14(c) it can be seen that
the varicose mode in the Rayleigh regime belongs to capillary instability caused by
surface tension (Shen & Li 1996). The work done by surface tension is positive at
the axial wavenumber k < 1. From a physical point of view, surface tension tends to
make the area per unit mass smaller and drives towards the formation of droplets
in the jet breakup process. However, viscosity tries to decelerate the change in shape
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Figure 14. Energy budget for a single liquid jet under a radial electric field. (a) The varicose
mode, n= 0, Re= 10, (b) the kink mode, n= 1, Re= 10, (c) the varicose mode, n= 0, Re= 1
and (d ) the kink mode, n= 1, Re= 1. KE: the disturbance kinetic energy; SUT : the work done
by the surface tension; ELF : the work done by the radial electric field; DIS : the mechanical
energy dissipation through the viscosity of liquid. We = 10, ζ = 0.1.

through viscous dissipation. In such a way the varicose mode is suppressed. On the
other hand, the work done by the electric field is negative in the long wavelength
region k < 0.6, which weakens the destabilizing effect of surface tension. For the
kink mode, as shown in figures 14(b) and 14(d ), only the electric field does positive
work in long wavelength region. The work done by surface tension is negative. DIS
corresponding to viscous dissipation is small compared to ELF and SUT, and also
much smaller than DIS for the varicose mode. Therefore, on the one hand, liquid
viscosity suppresses the varicose instability of the jet more than the kink instability,
while on the other hand, radial electric field promotes the kink instability more than
the varicose instability. In the single-liquid electrospinning experiments (Fong, Chun
& Reneker 1999; Zuo et al. 2005), it was found that the kink instability is easier to be
predominant for higher liquid viscosity and higher electric field. Our analysis accords
well with the experimental result.

3.4. Effect of the interface tensions on the jet instability

In the theoretical model there are two dimensionless numbers related to interface
tension. They are the Weber number We = ρ2U

2R2/γ2 and the interface tension
coefficient ratio Γ = γ1/γ2. The Weber number We represents the magnitude of
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Figure 15. The effect of the interface tension of the outer interface on the growth rates of
(a) the para-varicose mode n= 0, (b) the para-sinuous mode n= 0, (c) the helical mode n= 1
and (d ) the non-axisymmetric mode n= 2. We1 = 43.5.

surface tension on the outer interface relative to the inertial force. The surface tension
on the inner interface can be represented by a combined dimensionless parameter
We1 =We/Γ . In the reference state We1 = 43.5. We and We1 may have different effect
on the jet instability. They are investigated individually.

3.4.1. Effect of the interface tension of the outer interface

Figures 15(a)–15(d ) illustrate the effect of the interface tension of the outer interface
on the para-varicose mode, para-sinuous mode, helical mode and non-axisymmetric
mode n= 2, respectively, where We1 is fixed to the value in the reference state. Like
the radial electric field, the interface tension at the outer interface has a two-fold
effect on the para-varicose mode and para-sinuous mode: in long wavelength region
where the axial wavenumber is smaller than a critical value (k < kcrit , kcrit ≈ 1) the
growth rates of the modes are reduced as We increases, while in relatively short
wavelength region where k > kcrit the growth rates are increased. The effect of We on
the para-sinuous mode is more profound than on the para-varicose mode. For long
waves k < kcrit the interface tension at the outer interface does positive work, and
therefore the disturbance kinetic energy is increased; conversely, for relatively short
waves k > kcrit the work is negative, and the kinetic energy is reduced. The growth
rate of the helical mode is always increased as the Weber number increases, as shown
in figure 15(c). Similarly, in figure 15(d ) the non-axisymmetric mode n= 2 becomes
unstable only if the Weber number is sufficiently large. For the helical mode and the
non-axisymmetric modes with azimuthal wavenumber n> 1 the work done by the
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Figure 16. Comparison of the growth rates of the para-sinuous mode and the unstable
non-axisymmetric modes. We = 60, We1 = 43.5.

–0.4

log10 ζ

–0.8

–1.2

–1.6

0 0.5

log10We

1.0 1.5 2.0

–2.0

n = 1 Dominant

n = 0 Dominant

–2.4

Figure 17. The boundary curve between the para-sinuous mode dominant region and helical
mode dominant region in the (We, ζ ) plane. We1 = 43.5.

interface tension at the outer interface is negative. The non-axisymmetric instability
is suppressed as the interface tension increases.

At relatively large Weber numbers the non-axisymmetric modes having higher
azimuthal wavenumber also become unstable. Figure 16 illustrates the comparison of
them with the para-sinuous and the helical mode where the Weber number is fixed to
60. The phenomenon seems similar to that in relatively high radial electric field. In the
figure the non-axisymmetric modes up to n= 7 are unstable. The non-axisymmetric
modes n> 1 are most unstable at zero wavenumber. The helical mode dominates in
long wavelength region. In short wavelength region the para-sinuous mode, helical
mode and non-axisymmetric modes n> 1 have growth rates close to each other. In
this region it is hard to say which mode is dominant.

Comparing the maximum growth rate of each mode, we plot the boundary curve
between the dominant regions in the (We, ζ ) plane. A log–log plot is shown in
figure 17, where the squares stand for data points, and the dotted line is the fitted
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Figure 18. The most possible wavelengths of the para-sinuous mode and the helical mode
on the boundary curve shown in figure 17. We1 = 43.5.

boundary curve. Below the line is the dominant region of the para-sinuous mode, and
above it is the dominant region of the helical mode. There is no dominant region
of the other non-axisymmetric modes in the value range investigated. It is clear that
at large Weber numbers the helical instability becomes predominant even when the
electric field is considerably small. The boundary is a straight line in the log–log plot.
The fitting shows the relation between the critical electrical Euler number and critical
Weber number is ζ = 0.46We−1.0 approximately. The corresponding most possible
wavelength λmax on the boundary curve is plotted in figure 18. As the Weber number
increases, the most possible wavelength increases for both the modes. The relation
between λmax and the critical Weber number is approximately linear in the log–log
plot. The fitting yields the relation λmax =14.4We−0.155 for the para-sinuous mode and
λmax =71.0We−0.36 for the helical mode.

3.4.2. Effect of the interface tension of the inner interface

The effect of the interface tension of the inner interface on the growth rates of the
para-varicose mode, para-sinuous mode and helical mode is shown in figures 19(a)–
19(c), respectively. It can be seen in the figure that the interface tension on the
inner interface has a remarkable destabilizing effect on the para-varicose mode and
para-sinuous mode in the Rayleigh regime. Compared with the interface tension on
the outer interface, its stabilization effect on the modes in relatively short wavelength
region is not very evident. On the other hand, the interface tension on the inner
interface suppresses the helical instability significantly. The non-axisymmetric modes
with azimuthal wavenumber n> 1 are stable within the value range investigated.

3.5. Effect of the radius ratio on the jet instability

The radius ratio of the inner to outer liquid of the jet a =R1/R2 is the only geometric
parameter involved in this problem. Its effect on the para-varicose mode, para-sinuous
mode, helical mode and non-axisymmetric mode n= 2 is shown in figures 20(a)–20(d ),
respectively, where the electrical Euler number is fixed to 0.45. It can be seen in the
figure that the growth rates of all the modes are diminished as the radius ratio a

increases. Relatively, the maximum growth rate of the helical mode is reduced less
than the others, indicating that a thinner gap between the inner and outer interfaces
of the jet favours the predominance of the helical instability. The corresponding most



Axisymmetric and non-axisymmetric instability of an electrified viscous coaxial jet 221

0.0016 0.05

0.04

0.03

0.02

0.01

0

0.0012

0.0008

0.0004

0

0

0.02

0.04

0.06

0.08

0 0.5 1.0

1.0

ωr

ωr

0.5

2

25

5
10

1020
20

k

k

We1 = 1 We1 = 1

We1

1.5
1.00.5

1
2

5
10

20

k
1.5

(a) (b)

(c)

Figure 19. The effect of the interface tension of the inner interface on the growth rates of (a)
the para-varicose mode n= 0, (b) the para-sinuous mode n= 0 and (c) the helical mode n= 1.

possible wavelength moves towards long wavelength region as a increases. The result
also shows that the radius ratio has no influence on the cut-off wavenumbers of the
unstable modes except the para-varicose one.

4. Conclusions
The temporal linear instability of a viscous coaxial jet in a radial electric field

is studied. Both the axisymmetric and non-axisymmetric instability are investigated.
The radial electric field is found to induce the instability of the non-axisymmetric
modes. In the absence of electric field, the non-axisymmetric modes are all stable
and the para-sinuous mode is dominant. At sufficiently large electric field, the non-
axisymmetric modes become unstable. For non-axisymmetric instability of a certain
azimuthal wavenumber, there is usually one unstable mode. The smaller the azimuthal
wavenumber, the easier the non-axisymmetric mode to destabilize. The radial electric
field has a strong destabilizing effect on the non-axisymmetric modes, especially on
the helical one. The helical mode is the most unstable at sufficiently large electric
field. Moreover, the most possible wavenumbers of all the modes become large as the
electric field increases. Non-axisymmetric modes with azimuthal wavenumber n> 1
may be the most unstable at zero axial wavenumber. The influence of the electrical
permittivities of the inner and outer liquids as well as the electrical relaxation time
of the driving liquid on the jet instability is limited. Liquid viscosity stabilizes all
modes, especially the para-sinuous and non-axisymmetric modes n> 1. The helical
mode is dominant when liquid viscosity is high. The interface tensions of the inner
and outer interfaces have a great effect on the jet instability. The para-sinuous mode
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Figure 20. The effect of the radius ratio of the inner to outer liquids on the growth rates of
(a) the para-varicose mode n= 0, (b) the para-sinuous mode n= 0, (c) the helical mode n= 1
and (d ) the non-axisymmetric mode n= 2. ζ = 0.45.

is destabilized by interface tension in long wavelength region. Conversely, the helical
mode and the non-axisymmetric modes n> 1 are stabilized by interface tension. All
the unstable modes are found to be depressed as the gap between the inner and
outer interfaces of the jet becomes narrow. In general, relatively small radial electric
field, low liquid viscosity and high interface tension favour the predominance of the
para-sinuous mode and the realization of coaxial electrospraying in experiments;
conversely, relatively large radial electric field, high liquid viscosity and low interface
tension help the helical mode dominate in the jet instability, and hence coaxial
electrospinning is most likely to be realized in experiments.

The authors are indebted to the referees for their valuable comments that helped
to improve the manuscript. The work was supported by the National Natural Science
Foundation of China (Project No. 10802084, 10572137).

Appendix: Equations
The equations can be written in a condensed form as follows:

AF = ωBF,



Axisymmetric and non-axisymmetric instability of an electrified viscous coaxial jet 223

where F is a vector comprising all the eigenfunctions, i.e.

F= (û1r (r) , û1θ (r) , û1z(r), p̂1(r), û2r (r), û2θ (r), û2z(r), p̂2(r), q̂s, η̂1, η̂2)
T
.

The eigenfunctions û1r , û1θ , û1z and p̂1 are related to the inner liquid; û2r , û2θ , û2z

and p̂2 are related to the outer liquid. They are the functions of variable r . η̂1 is
related to the inner interface; η̂2 and q̂s are related to the outer interface. They are
constants.

The expressions of the matrices A and B are

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μrD
††

SRe
− 2inμr

r2SRe
0 −D

S
0 0 0 0 0 0 0

2nμr

r2SRe
μrD

††

SRe
0 − in

Sr
0 0 0 0 0 0 0

0 0 μrD
†

SRe
− ik

S
0 0 0 0 0 0 0

D∗ in
r

ik 0 0 0 0 0 0 0 0

0 0 0 0 D††

Re
− 2in

r2Re
0 −D 0 0 0

0 0 0 0 2in
r2Re

D††

Re
0 − in

r
0 0 0

0 0 0 0 0 0 D†

Re
−ik 0 0 0

0 0 0 0 D∗ in
r

ik 0 0 0 0

0 0 0 0 D 0 0 0 G1 0 G2

1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0
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0 0 0 0 0 0 1 0 0 0 0
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

respectively, where

D =
d

dr
, D∗ =

d

dr
+

1

r
, D† =

d2

dr2
+

1

r

d

dr
− k2 − n2

r2
, D†† = D† − 1

r2
,

G1 = − τεr2D1

D2ξ + D1εr2

, G2 = −τεr2D1(1 + kξ )

D2ξ + D1εr2

, ξ =
K ′

n(k)

Kn(k)
,

D1 = −K ′
n(k)

(
1 − εr2

εr1

)
+ I ′

n(k)

(
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n(ka)

I ′
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(
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(
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n(ka)

I ′
n(ka)

)
.
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In(x)and Kn(x) are the nth-order modified Bessel functions of the first and second
kinds, respectively. The prime denotes the derivative of the corresponding Bessel
function with respect to the argument x.

The boundary conditions are as follows:
at r = 0,

û1r = û1θ =
dû1z

dr
=

dp̂1

dr
= 0 for n = 0,

û1z = p̂1 = 0, û1r + iû1θ = 0, 2
dû1r

dr
+ i

dû1θ

dr
= 0 for n = 1,

û1r = û1θ = û1z = p̂1 = 0 for n > 1;

at r = a + η1,

û1r = û2r , û1θ = û2θ , û1z= û2z,

ikû2r +
dû2z

dr
− μr

(
ikû1r +

dû1z

dr

)
= 0,

in

a
û2r +

dû2θ

dr
− û2θ

a
− μr

(
in

a
û1r +

dû1θ

dr
− û1θ

a

)
= 0,

p̂1 − 2μr

Re

dû1r

dr
− p̂2 +

2

Re

dû2r

dr
+

Γ

Wea2
[1 − n2 − (ka)2]η̂1 = 0;

at r = 1 + η2,

ikû2r +
dû2z

dr
− q̂s

iζReD2

D2ξ + D1εr2

− η̂2

iζReD2(1 + kξ )

D2ξ + D1εr2

= 0,

n
dû2z

dr
− k

(
dû2θ

dr
− û2θ

)
= 0,

p̂2 − 2

Re

dû2r

dr
+ q̂s

ζD2ξ

D2ξ + D1εr2

+ η̂2

(
1 − n2 − k2

We
− εr2ζD1(1 + kξ )

D2ξ + D1εr2

)
= 0.
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